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ABSTRACT

Metamodels, as any other software artifact, are expected to evolve.
Consequently, the instances of those metamodels - aka the models
- must evolve according to the changes made to the metamodels.
This is commonly known as co-evolution and is a prominent re-
search topic in Model Driven Engineering. However, co-evolution
mostly adopts an all-or-nothing strategy and does not consider
two important aspects, namely (i) recording the evolution history
of a metamodel and (ii) allowing models to co-evolve at different
times. We find that industrial co-evolution is commonly triggered
by customer needs (the users of metamodels). For example, in the
manufacturing domain, co-evolution tends to be tied to evolving
hardware infrastructure. This implies that co-evolution is rarely dic-
tated by the evolution of the metamodel but rather by the evolution
needs of the models - and these evolution needs vary. In this paper,
we propose an approach that allows engineers to record the history
of a metamodel as versions and also create and maintain arbitrary
models of those versioned metamodels, thus allowing engineers to
co-evolve models at different times.
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1 INTRODUCTION

Model Driven Engineering (MDE) is a software development para-
digm that is widely used in different industries [1, 15]. MDE com-
monly describes complex domains using metamodels [30] that de-
fine an abstract description of a specific domain [4, 30]. Metamodels
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are used to define the structure of models, i.e., what properties a
model should have and how it relates to other parts of the domain.
The relationship between the metamodel and the model is similar
to the relationship between a class and its instance, i.e., a model
is an instance of a metamodel. A metamodel, similar to any other
software artifact, is expected to change over time, as evidenced in
empirical studies on domain-specific language (DSL) [3]. However,
changing a metamodel typically leads to invalid models, which
must be updated by applying co-evolution [2, 16, 18-21, 27, 29, 32].

Co-evolution is the process of changing a model according to
the changes made to its metamodel [16], aiming to keep mod-
els consistent with metamodels over their lifespan. Current re-
search on co-evolution focuses on two strategies: fully automate co-
evolution [2, 19, 20] or assist users during the co-evolution [18, 21].
Both strategies still consider the previous versions of a metamodel
as unimportant artifacts that are discarded after the co-evolution is
complete. Such an all-or-nothing approach leads to two main prob-
lems: (i) lack of history - in existing approaches, where the previous
versions are discarded, keeping track of the history of a metamodel
is often seen as an afterthought [13]. Nonetheless, a recent survey
with modeling engineers has shown that one of the most requested
features for meta-modeling tools is the ability to create versions
of models and metamodels that can be compared and merged [28].
This finding highlights the need for a systematic way of record-
ing the metamodel evolution, that can be used for maintaining
metamodels. (ii) lack of co-existing versions - co-evolution is usually
applied to all models. However, there are situations where models
cannot be co-evolved, e.g., due to constraints of specific customers
or incompatibility issues with an older hardware or library. In such
situations, it should be possible to delay or prevent the co-evolution
of a subset of models and allow these old models to co-exist in
the same environment with the evolved models. We speak of co-
existence when models of different versions of their metamodel exist
within a single project, e.g., consider a manufacturing domain where

two alike machines exist, but only one is updated.
In this paper, we present an approach that addresses both of

these issues by introducing the creation of metamodel versions.
The changes between each version are recorded to allow engineers
to create different model versions accordingly. The approach also
enables the co-evolution of model subsets by having the metamodel
versions co-exist in the same environment. For that, we introduce
the idea of co-existence, which describes the ability to have different
versioned metamodels and models existing together.
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2 BACKGROUND

Two common ways of recording artifact changes are (i) state-based
and (ii) operation-based versioning [24]. On the one hand, state-
based approaches like Git [12] store states of an element and derive
the differences by comparing two different states, i.e., diffing of ver-
sions. On the other hand, operation-based versioning approaches
like Eclipse Edapt [8] represent changes as transformation opera-
tions performed on a state to obtain a successor state. State-based
approaches are typically insufficient to extract a complete history
of an artifact [22, 26, 31]. Differently, operation-based versioning
allows storing more detailed information about changes. Studies in
the area of metamodel evolution use such operations by providing
a refactoring catalog [2, 5] to assist engineers in the evolution of
metamodels. For this reason, we adopt an operation-based infras-
tructure as the basis for our approach [14]. In this infrastructure,
artifacts are described as elements containing properties. Changes
to these artifacts are then recorded via corresponding create, delete,

and update operations on these elements and their properties.
Now, we present a motivating example of a metamodel and its

evolution to highlight the issues addressed in this paper. We use
it to demonstrate the importance of a version history and delayed
co-evolution with co-existence in the metamodel domain. The ex-
ample is inspired by related work on the technical debt of model
evolution [29]. Figure 1 shows a simplified metamodel, alongside its
evolution over time, that is used to create services that are deployed
on machines. The metamodel allows the creation of two model
elements, namely Service and Port. While Service describes the
service running on the machine, Port describes the ports required
by the given service. In Version 1, the Service component has two
properties called inPort and outPort. The inPort property con-
tains all the ports where the service receives incoming messages,
while outPort contains the ports used to send messages generated
by the service. During an evolution, in Version 2 engineers decided
to merge the inPort and outPort properties into a new property
called ports to simplify the Service properties. Also, a constraint

was added to ports, to allow a Service to have only two Ports.
The importance of recording the history of a metamodel becomes

apparent even with such a simple metamodel. To emphasize this,
we look at how inPort and outPort have been merged into ports.
This change already poses some issues for state-based version con-
trol systems and diff comparison tools such as EMF Compare [10].
EMF Compare is a tool to compare and merge two different mod-
els and metamodels created in the Eclipse Modeling Framework
(EMF) [9]. While EMF Compare allows one to find simple changes
in the metamodel, e.g., the creation of properties and changing
of constraints, more complex changes are often mislabelled. For
the merging of outPort and inPort into ports, it would detect
that one of the properties, i.e., outPort, was deleted, while the
other, i.e., inPort, was changed to match the definition of ports.
This causes problems if one were to use this comparison as a basis
for co-evolving models. The resulting models would probably all
delete their OutPorts thus destroying the semantics of the origi-
nal model. While the changes made in the motivated example are
easy to detect, if several of these changes occur in a more complex
metamodel, engineers would struggle to understand those changes
without additional context. Thus, further demonstrating the need
for a systematic way of recording the changes made to metamodels.
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Figure 1: Evolution of a service metamodel and models

Existing co-evolution approaches aim to transform all models of
a metamodel into newer versions. However, since these versions
are often used to suit different customers and contexts, models
should instead be evolved to support specific needs. The example
from Figure 1 shows a company that hosts services for different
customers. The first model is an Event-Logger for Customer 1, where
the customer wants to upgrade to the latest version. Here, the model
can be co-evolved easily without changing the semantics of this
model (see Versions 1 and 2 from Customer 1 in Figure 1). The
second service, which converts files and extracts metadata from
them, i.e., the service for Customer 2, highlights the problem of
forced co-evolution. Since this model has three ports (one incoming
and two outgoing ports), it is not possible to transform this model
into Version 2 of the metamodel without changing its semantics,

i.e., removing one of these ports and adapting it.
The need for a solution, in which these different versioned ser-

vices can co-exist, becomes apparent with this simple example.
Often engineers would try to work around this issue by either mak-
ing changes to the metamodel backward compatible or having a
machine that only hosts tools and models with a specific version
of the metamodel, i.e., clone-and-own [11, 17, 23]. While the latter
allows to manage multiple versions, it would become increasingly
infeasible the more versions have to be supported [25]. Having the
metamodel be backward compatible can solve this issue, however,
it also creates the problem that it restricts the changes that could be
made to a metamodel over its lifespan. With backward compatibil-
ity, the engineer would have to keep previous bad design decisions
alive during new iterations to support older models, thus limiting
the number of refactorings a metamodel can experience.

3 RELATED WORK

This section reviews related work on metamodel co-evolution, that
address similar problems to our approach. The studies by Khel-
ladi et al. [22] and Vermollen et al. [31] focus on reconstructing
the history of a metamodel. Their approaches try to recover an
operation-based history, by comparing two state-based versions
of a model. The work from Benetti et al. [2], on the other hand,
provides a refactoring catalog to cover the changes that can be
made to the metamodel to assist during co-evolution. These three
studies, however, do not allow different versions of metamodels
to co-exist and only record the changes made to the metamodel
instead of both model and metamodel.
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Figure 2: Meta-metamodel for co-existing metamodels

One recent work on co-evolution by Di Ruscio et al. [29] proposes
a tool to minimize technical debt over the metamodel evolution by
creating an in-between version of two metamodel versions. That in-
between version can be considered a union of both versions. Here,
properties are declared as deprecated when they are deleted or
removed during the next iteration to help engineers find technical
dept in the metamodel and allow all models to be co-evolved into the
new version instead of having multiple versions co-exist. The work
by Cicchetti et al. [6, 7] focuses on concurrent versioning and the
problems that can occur when multiple engineers are working on
the same version in the same environment. Their approach merges
concurrent versions of metamodels and their models. They solve
this issue by using a difference metamodel, which is created based
on a given metamodel. This difference metamodel is then used to
store the changes made to this metamodel, i.e., additions, deletions,
and updates, which are then used to merge the concurrent versions.

4 PROPOSED APPROACH

In this section, we present our proposed approach for metamodel
versioning and models co-existence. Our approach’s underlying
principle is to allow engineers to create versioned metamodels
within the metamodel domain itself. For that, we use a meta-meta-
model based on state-of-the-art concepts regarding MDE version-
ing infrastructures [14]. We adapted the given meta-metamodel
to allow engineers to define metamodels, create versions of those
metamodels, and instantiate models of those versioned metamod-
els. This enables to differentiate between the different versioned
elements in the metamodel. For a better overview of the adapted
meta-metamodel, we first show its core concepts, i.e., how those
metamodels and models are defined (Section 4.1). This is achieved
by creating the initial version of our service metamodel and the
Event-Logger from the motivating example inside the proposed
meta-metamodel. Next, we present the properties that were added
to introduce versioning (Section 4.2). The versioning mechanism
is then emphasized with the help of the service metamodel as an
illustrative example. Finally, we highlight how our approach can
be used to record the changes made to the metamodel (Section 4.3).
This is shown by presenting the version graph of the port property,
that was extracted from the meta-metamodel.

4.1 Meta-metamodel Core elements

The proposed meta-metamodel, illustrated in Figure 2, consists
of two layers. The first layer is the Metamodel Layer, where each
component is used to describe the metamodel. The other layer,
called Model Layer, describes the models of metamodels that are
defined in the previous layer. The Metamodel Layer consists of two
components called Type and PropertyType. Type is used to define
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Figure 3: Metamodel and Model in the meta-metamodel

the structure of a model element, i.e., what properties the given
model element will have, whereas PropertyType defines the struc-
ture of a given property. PropertyType has multiple fields that
are used to define the property. The cardinality field describes
whether the property is a List, Set, Map or a Single property, while
referenceType is used to define the type of allowed elements in
the field and capacity limits the number of entries that are allowed
in the given property. The Model Layer also consists of two compo-
nents, namely Instance and Property. An Instance describes a
given model element, e.g., the Event-Logger Service from our moti-
vating example, where its field typeOf points to the corresponding
Type of a given model element. The component Property is used
to describe the properties of an element, storing the given value
of the property and referencing the corresponding PropertyType
via propertyType. In the example of Figure 3, we can see how
the initial version of the service metamodel and the Event-Logger
model presented in the motivation (see the model from customer 1
in Figure 1) would look like. Figure 3 shows that on the Metamodel
Layer, four types have been created, one for the Service and three
types for the ports, i.e., Port, InPort, and OutPort. The Service
Type has two PropertyTypes one for the outPort property and
one for the inPort property from the metamodel. Both of these
properties are set properties as defined by cardinality, and they
only allow instances of type InPort or OutPort inside, ie., see
referenceType. The Event-Logger model can be seen within the
Model Layer (bottom of Figure 3), in which an Instance called
EventlLogger was created. This Instance is of the type Service
and has two properties called inPort and outPort, as seen in the
field properties. The Property inPort is of the property type
InPort and contains Events as a value, while the outPort has
OutPort as its property type and contains Logs. Both the Events
and Logs are Instances of their respective type, i.e., InPort and
OutPort.

4.2 Versioning Concepts

For the versioning of metamodel components, i.e., Type and
PropertyType, the underlined fields in Figure 2 were created.
Specifically, the three properties initialVersion, nextVersion
and previousVersion are used for modeling versions. The prop-
erties previousVersion and nextVersion point to the prede-
cessor and successor versions of a given type, whereas the
initialVersion is used to point to the first version of a given type.
The versioning mechanism works as follows. During the creation
of a new type, the previousVersion and nextVersion are set to
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null and initalVersion points to the newly created type. Now en-
gineers can modify the given type and, when they are satisfied with
the current state of the type, they can set this version to released
by setting the property isReleased to true. With that, instances
of this type can be created and, additionally, this version is locked
and cannot be modified anymore. When engineers want to adapt a
type, i.e., evolve it, they need to create a new version from it. This
means that the type’s current state is cloned and used as the base
for the new version. The newly created version is set as a successor,
i.e., nextVersion, of the old version, and the old version is set as
the predecessor of the cloned version, i.e., previousVersion. The
engineer can now change this version, since it is a copy of the previ-
ous version. If the versioned component is a Type, it also reuses the
PropertyTypes of its previousVersion since it is still referencing
them via the field propertyTypes. Finally, there is also the prop-
erty isObsolete which allows one to set a given type to obsolete.
Then, no new instances of the given type can be created, allowing
engineers to disable certain versions of Types. To demonstrate our
approach, we show how the versioning mechanism is used for the
service metamodel, as seen in Figure 4. Creation of Version 1:
First, the initial version of the metamodel is created. This version
is the same as the one shown in Metamodel Layer in Figure 3. Here,
engineers would create the Types for the Service and Port com-
ponents, i.e., Port, InPort and OutPort. As mentioned earlier, the
field initialVersion points to the first version of a given Type or
PropertyType and is used to help to distinguish between different
types. Since all the created Types are new Types, i.e., the first ver-
sion rather than a successor version of previous types, all of them
are referencing themselves via the initialVersion field. Next, the
PropertyTypes, i.e., inPort and outPort, are created and added
to the Service. Again, the initialVersion is set for them. Af-
terwards, this version of the metamodel is set to released and all
types are locked. Creation of Version 2: In Version 2, both inPort
and outPort are merged into a new PropertyType called ports.
Because ports was created by a merge, it has both inPort and
outPort as its previousVersion. Additionally, due to the merge,
ports is considered a new PropertyType, and thus it references it-
self via initialVersion instead of either inPort or outPort. Next,
a new version of Service is created. Here the current state of the
first version of the Service is cloned and set as the second version,
still referencing the old PropertyTypes. This allows one to adapt
the PropertyTypes accordingly by replacing the old types from the
propertyType field and adding their new versions, i.e., replacing

Homolka et al.

Version 1 Version 2

inPort(Version 1)
cardinality = SET
isReleased= true

on

ports(Version 2)
cardinality = Set
isReleased=true

referencedType = <InPort>

nextVersion

referencedType = <Port>
capacity= 2

outPort (Version 1)
cardinalty = SET
isReleased= true

previousVersion -

referencedType =<OutPort>

Figure 5: Version tree of the port PropertyTypes

inPort and outPort with ports. Furthermore, this demonstrates,
how the approach reuses parts of the metamodel from the previous
iterations to help reduce the complexity and size of the metamodel.
Here, the current version reuses InPort, OutPort, and Port from
Version 1 since no changes have been made to them.

4.3 Tracking the changes in the metamodel

The use of an operation-based infrastructure, allows us to track
the changes made to metamodels and models through create, up-
date, and delete operations. In addition, the proposed metamodel
versioning mechanism records the changes made, ie., the ver-
sions. This allows the history of a type to be extracted from the
previousVersionand nextVersion references. Figure 5 shows the
changes made to the property ports as a version graph extracted
from the meta-metamodel. This version graph is a state-based graph
that shows the state, i.e., the versions, of a given type over its life-
time. It allows one to extract the changes made to that type by
comparing the states. For example, it allows engineers to find out if
a property has been merged by comparing its previousVersions
or nextVersions respectively. In the case of the example, it shows
that ports has two previousVersions, i.e., inPort and outPort,
which means that both of them have been merged into ports.

5 FUTURE PLANS

In this paper, we have presented a novel approach that supports
recording the history of metamodels and allowing models of dif-
ferent metamodel versions to co-exist. This opens room for new
research opportunities. For example, extending the operational se-
mantics of the versioning infrastructure to provide more detailed
information about metamodel refactorings. To achieve this, we
designing an approach that enables engineers to group and label
operations, which would allow us to introduce a refactoring catalog
similar to the one described by recent studies [2, 5]. This enables
us to introduce approaches to automate engineers in co-evolving
models. Furthermore, the labeled operations add the possibility to
differentiate between the changes made to models, i.e., co-evolution
changes or modeling changes made by the engineer. To evaluate our
approach we plan to mine Git repositories for EMF metamodels and
commits made to these metamodels. We plan to use the generated
dataset to show how metamodels evolve and how our approach
supports different versioned metamodels coexisting.
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